Amgueddfa Blog: Natural History

"If you asked me what a magelonid was 18 months ago, I would have looked at you with a somewhat muddled expression. Let me tell you, a lot has changed since then. Roll onto the present day, after a year at Amgueddfa Cymru – National Museum Wales for my Professional Training Year (as part of my Zoology degree at Cardiff University), I could talk for as long as you are willing to listen about this fascinating family of marine bristle worms, commonly known as the shovel-head worms (Annelida: Magelonidae)."

            When my application was first approved from the Natural Sciences Department at the museum, I didn’t know what to expect. I had always loved anything marine and knew from the start this is the area I wanted to build a career around. This was a very broad declaration and beyond this, I was rather diffident in what I wanted to pursue. Therefore, my number one priority was to keep an open mind and make the most of everything the experience would offer. This view shaped a year filled with opportunities, that has not only been indispensable in developing my scientific skills in both hands on research and writing, but also in giving me a direction I am interested in for the future. 

            The majority of the placement involved both behavioural and taxonomic studies on European magelonid species, through the practicing of methods such as time-lapse photography, live observation, scanning electron microscopy, high definition photography using a macroscope, and taxonomic drawings using a camera lucida attached to a microscope. As a result of this work, some very interesting findings were highlighted for the Magelonidae, with important implications for furthering our understanding of these enigmatic animals. Perhaps the most fascinating arose through extensive time-lapse photography and observing animals in aquaria within the marine laboratory, in which an un-described behaviour emerged in the tube dwelling species Magelona alleni. Later termed as ‘sand expulsion’, this behaviour was a highly conspicuous method of defecation where M. alleni would turn around in a burrow network, raise its posterior region into the water column and excrete sand around the tank. Just knowing I was most likely the first person to ever witness this was a very rewarding experience in itself! To understand why this novel behaviour was exhibited, the posterior morphology of M. alleni was compared to additional European species. These findings have led onto my first publication in a peer-reviewed journal, of which two more papers and an article are due to follow as a result of working closely with my supervisor throughout the year.

I also got the opportunity to participate in tasks that are essential to the upkeep of the museum, such as curation, specimen fixation and preservation, along with invertebrate tank maintenance. Additionally, I participated in sampling trips, including a visit to Berwick-upon-Tweed and outreach events, such as ‘After Dark at the Museum’, which saw over 2,000 visitors, and the RHS show Cardiff.   

            Overall, the museum is a very friendly, intellectual and dynamic environment that has more to offer than perhaps meets the eye. This is why anyone who wants to study the small, whacky and wonderful world of marine invertebrates should not pass up an opportunity to undertake a placement here. Spend any prolonged amount of time amongst the hundreds of thousands of specimens kept in the fluid store, and I guarantee you will not be able to escape a visceral appreciation of the natural history of our world. With this comes a feeling of preservation for all we have and a reinforcement of why museums are such a crucial component of our society today, something that is too easily forgotten. 

Read more about Kim's journey through her PTY Placement at National Museum Cardiff:

https://museum.wales/blog/2017-08-04/A-new-world-of-worms---beginning-a-Professional-Training-Year-at-the-museum/

https://museum.wales/blog/2017-11-15/A-tail-of-a-PTY-student/

https://museum.wales/blog/2018-02-07/The-early-bird-catches-the-worm/

 

 

What was I thinking when I said yes?

 

Soapbox Science is a fantastic initiative to promote the role of women in science by getting them to stand on a soapbox in the middle of a city centre and explain to and, hopefully, enthuse, people about what they do. This year, the Cardiff event is being held on 2nd June, outside Cardiff Central Library, by the St David’s Centre (see poster).

 

So again, what was I thinking?

 

Well actually, I was thinking that most people don’t understand taxonomy, what it is and why it’s important, let alone why I would want to look at worms all day, and I want to tell them.

 

I want them to understand why it is important, not just to me, but why they should care too. Taxonomy is the science of naming, describing and classifying organisms (showing how they are all related to each other and patterns of evolution). It is just one aspect of my job but the one that often gets the most interest and questions and, I think, possibly the least understood part. In 2010, the Census of Marine Life returned an estimate of over one million species living in the oceans, of which around one to two thirds are thought to be unknown. Add to that more recent research that shows that many species are, in fact, species complexes that consist of multiple species that are almost indistinguishable in appearance and, actually, the estimate of undescribed species suddenly rockets.

 

But so what? Why should people care about whether we know what all the different creatures in the sea are and give them names? Well, that is what I want to explain along with a little about how we come up with names. To this end I now have the job of ‘creating’ a worm that people can help name on the day using various features and information that I will tell them. Names tell you something about the animal, sometimes appearance, sometimes where it is from, but importantly, names are unique and help you identify that one animal from a group of others that may look very similar.

 

The montaged image on this page is just one of two that I have created to show people what marine bristleworms (polychaetes) look like. Most people think of earthworms when you talk about worms but actually polychaetes are so much more: more colourful, more detailed, many have eyes and jaws and some can even grow big enough to bite you! They all have interesting names that I will help explain to demonstrate what names mean.

 

Intrigued? Want to know more? Then come down to the event on Saturday 2nd June and find out how we name species and why it is important!

(http://soapboxscience.org/soapbox-science-2018-cardiff/)

Great British Mollusca Types Project: A union database for the UK

The GB types project began 2 years ago with 6 mollusc curators from National Museum Cardiff and Natural History Museum, London leading the way. The idea - to find, document and make available online as many mollusc types as possible in 7 Museums around the UK. The project funded by the John Ellerman Foundation (Regional Museums and Galleries Fund) worked with Glasgow Museums, Glasgow Hunterian, World Museum, Liverpool, Newcastle Museums, Leeds Museums, Machester Museum and the Royal Albert Memorial Museum. From October 2016, the process began of visiting the collections at each of the partner museums to locate known and potential mollusc type specimens. The specimens were loaned to National Museum Cardiff or the Natural History Museum for specialist photography, databasing and research. For the first time, data from these nine institutions will be recorded permanently on an internationally accessible online database: https://gbmolluscatypes.ac.uk/

Over 95 potential mollusc types were borrowed from LeedsMuseums, mostly from the extensive collection of Sylvanus C. T. Hanley. The collections contain many type figured and cited specimens of international importance.

Over 150 types were borrowed, researched and photographed from McrMuseum, many of these molluscs were named by Melvill and Standen at the end of the 19th Century.

Mollusc types in GMRCNitshill / GlasgowMuseums include 150 year-old types of Thomas Gray and Carl Westerlund. Thanks to Richard Sutcliffe, & former curator Fred Woodward for GB types work in the 1970s-1980s

Hancock, Alder and Angas collections dominate the GNM_Hancock Mollusca collections and the fluid-preserved nudibranchs proved tricky to photograph!

The mollusc collections at the hunterian are rich in historic material going back to Cook’s voyages, the Duchess of Portland and Laskey. They hold the infamous holotype of Gray’s Strombus listeri and several types of Godwin-Austen.

Over 100 of Col. George Montagu’s shell types were discovered at RAMMuseum. These as well as some found at NHM_London were presented in the following paper.

Marrat’s Olives and Nassas dominated the mollusc type material at World_Museum, easily found thanks to curator Nora McMillan who worked on the collection 1933-2000.

You can see more of the Twitter highlights following this project with the hash tag #GBMolluscaTypes or this Twitter Moment

The Museum holds a very significant library collection of Molluscan books, known collectively as the Tomlin Library. They were donated to the Museum in 1955 by John Read le Brockton Tomlin (1864-1954), a founder member of the Malacological Society of London, along with his extensive shell collection and archives.

 

To celebrate the Year of the Sea, we are focusing on some of the books in the Tomlin Library, and highlighting some of its treasures.

 

First up is Historiae sive synopsis methodica conchyliorum by Dr Martin Lister (1639-1712). Dr Lister was a physician to Queen Anne, who also had an interest in natural history and communicated with other leading naturalists of the time such as Edward Llwyd, John Ray, and Robert Hooke. He is generally thought to be the founder of conchology in England.

 

He had created a small version of this book for circulation to friends in 1685, but almost immediately began work on an expanded version which was produced from 1685 to 1692. This copy had 490 pages, with 1062 engraved copper plates, showing 2000 figures of molluscs.

 

The illustrations were the work of two of his daughters Susanna (1670-1738) and Anna (1671–1704). Their father had encouraged their drawing abilities, and they would have used the shells in his collection, or those sent by friends such as Sir Hans Sloane, from which to make their drawings. They were also responsible for etching or engraving the plates on copper and it is generally assumed that the printing was done by the family at home, rather than taken to a professional printing firm.

 

The publication of the first edition of Historiae Conchyliorum was a lengthy and laborious undertaking, it is an impressive feat for anyone to be involved in, but even more so for Susanna and Anna as it is thought that they were between the ages of 13 and 15 when production began. It was initially published in four books, or parts, and then a second, complete, edition was produced almost immediately and became available in 1697.

 

In 1712 Lister bequeathed the original copper plates to the Ashmolean Museum, and in 1770, the curator of the Museum, William Huddesford, published a third edition of the book. He reprinted the illustrations from the original plates, included additional notes from Lister’s manuscript, and dedicated it to the famous shell collector, the Duchess of Portland.

 

A final edition was produced in 1823, which included an index by Lewis Weston Dillwyn (1778-1855), the porcelain manufacturer whose shell collection is now housed in the Museum zoology department. This edition includes the notes from the Huddesford version and identifications of the species and remarks by the compiler. It is technically the fourth edition but is known generally as the third.

 

The Tomlin Library contains a copy of the first edition from 1685-1692, a copy of the 1770 Huddesford edition and two copies of the 1823 Dillwyn edition. For the duration of Women's History Month the 1685-1692 version will be on display in the Main Hall of National Museum Cardiff, along with a variety of shells from the zoology department.

Amy Wyatt is a Professional Training Year Intern from Cardiff University, find out more about Amy's project this year

 

A herbarium is a collection of preserved plant specimens that have been stored appropriately, databased and arranged systematically to ensure quick access to students, researchers and the general public for scientific research and education. The Welsh National Herbarium contains vascular plants, bryophytes (mosses and liverworts), lichens, fungi, and algae. In the vascular herbarium, specimens are arranged by plant family/genus, and stored alphabetically.  Specimens are stored in tall cabinets within the herbarium which is kept cool at all times. Each cabinet usually contains one taxonomic group of plants, for example members of the genus ‘Rubus’ have their own cabinet/section within the herbarium. And within the ‘Rubus’ cabinet, you will find individual species of Rubus (Rubus occidentalis-black raspberry, Rubus aboriginum–garden dewberry), each with its own folder containing all specimens of that species.  Some specimens have been digitised and placed on an electronic system to make accessing records and ‘borrowing’ specimens to other institutions easier.

Herbaria are essentially the ‘home’ of historical plant records, containing information that would otherwise be lost in time. It is the curator’s role to ensure that all specimens are kept contamination free, are stored according to the correct guidelines, and are all stored systematically. The herbarium is checked regularly for infestations, and strict guidelines are put in place to ensure all specimens remain in pristine condition. Any loss or damage to specimens would be catastrophic because of the irreplaceable nature of collections. Herbaria also contain type specimens, individual specimens that an author based their description on when describing a new species. So, damage to these specimens has wide devastating impacts to not just museum collections, but science and taxonomy as a whole.

Who benefits from herbaria?

HISTORIANS: Specimens stored in the herbarium can give insights into the daily life of people in history. Collections like the economic botanic collection contain plants and botanical items that were of important domestic, medicinal, cultural use to society in the past. This collection contains herbs, dyes, textiles and culturally important items that are kept demonstrate their importance to world culture through displays, museum visits and exhibitions! Historians can also use herbarium collections for project collaborations, for record of discoveries and for exploration.

BOTANISTS: The most obvious field that benefit from herbaria is botany; botanists are scientists that exclusively study and perform experiments on plants. Some herbaria records span back hundreds of years, so this gives botanist a unique chance to look at how plant life has changed in this period of time. There are many studies that can be performed on herbaria entries, and usually depends on the specialist skills of the researcher looking at them. Botanists can look at changes in stomatal density, how a plant species has changed over time, when invasive species were first documented in the herbarium, what plant species are abundant at a particular period of time, flowering times of plants, if there are any gaps in plant records, amongst a whole host of other information

SCIENTISTS: It’s not exclusively botanists that benefit from herbaria, other branches of science can also use the collections in their research. Biologists, conservationists and ecologists can benefit from the specimens found in herbarium and frequently use collections for ongoing research. Specimens provide a detailed account of plant life, and this information can be used to look at diversity and abundance of certain plant species, patterns of plant distribution, record of rare plant sightings (e.g. here we have a very precious collection of ghost orchids, which were thought to be extinct until 2009 and have only been sighted a hand full of times since), environmental responses to changes in the climate or weather, to educate students, etc. Herbaria can also be an excellent source of collaboration between universitys and the Museum, providing networking potentials.

TEACHERS/PEOPLE IN EDUCATION: Herbaria and museums are a great source of outreach for education of the public. Collections like the economic botany collection provide historical context to important botanical items (e.g Indigo, cinnamon) that have part of our culture behind them. The herbarium also has active researchers working upon vascular plants, lower plants, and diatoms. This work is often used to educate the public at events like museum exhibits, guided tours of the herbarium, conferences, and shows like the RHS flower show. 

What can be found in herbaria?

Vascular plants - Vascular plants are essentially ‘higher plants’ and are composed of all individuals that have water conducting tissue in their ‘stems’; flowers, grasses, trees, ferns, herbs, succulents, etc. are all types of vascular plants. These types of plants are usually stored on archival herbarium sheets, but the method of preparation and storage may depend on the contents of the specimen. Plants that are easily pressed are mounted onto acid free herbaria sheets, with a descriptive label for each specimen. These herbaria specimens must contain reproductive and vegetative organs, which are critical for species identification in plants. Any plant parts that can’t be easily pressed, e.g. tubers, bulbs, fleshy stems, large flowers, cones, fruits, etc are usually dried and placed in boxes or paper bags that are associated with other parts of the specimen.

Bryophytes (mosses and liverworts) - Bryophytes include both liverworts and mosses are generally described as ‘lower plants’ and represent some of the oldest organisms on earth. Both groups grow closely packed together in matts on rocks, soil or trees. These types of plant don’t have regular water conducting tissue, so rely heavily on their environment to regulate their water levels. Both mosses and liverworts are unsuitable for ‘pressing’ as key features used in identification would be damaged during the process. Instead, specimens are dried, decontaminated and placed in packets, boxes or paper bags to ensure their long-term storage.

Lichens - Lichens are unique in plant taxonomy because they are an organism composed of two separate organisms in a symbiotic relationship. A lichen is composed of a fungus, and either an algal cell or bacterial cell. The fungal portion of the organism extracts organic carbohydrates and nutrients from the environment, and the algal/bacterial portion of the organism undergoes photosynthesis to capture energy from the sun. Because lichen are difficult to extract from their environment, commonly they are collected still attached to their substrate (rocks, bark, soil crusts) and stored in boxes.

Fungi - fungi are filamentous, simple organisms that occupy almost every habitat on earth. Fungi are not plants and belong in their own kingdom, as they contain no chlorophyll and extract organic nutrients directly from their environment. Surprisingly, most fungi are totally microscopic and invisible to the naked eye dwelling deep in the ground connected by a network of hyphae. It is only a small portion of macroscopic fungi that produce fruiting bodies we know as ‘mushrooms’. Fungal bodies cannot be pressed, they must instead by dried thoroughly and stored in cases or boxes.

Algae - Algae are a very diverse group of non-flowering aquatic organisms that contain chlorophyll, so can photosynthesise to produce energy for themselves. Algae are very important to the earth, and it’s estimated that they produce 70-80% of the earths atmospheric oxygen. The term ‘algae’ covers wide range of organism including sea weed, kelp, ‘pond scum’, algal blooms in lakes or pools, diatoms, etc. These groups are not necessarily closely related and can exist in a huge range of different forms! Collecting and preserving algae can be done in two ways, storing them in liquid to preserve the specimen or dry preserving the specimen on herbarium paper or a microscope slide. What method is best usually depends on the species being collected and its properties.